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ABSTRACT

Worms are becoming more virulent at the same time as op-
erating system improvements try to contain them. Recent
research demonstrates several effective methods to detect
and prevent randomly scanning worms from spreading [2,
13]. As a result, worm authors are looking for new ways
to acquire vulnerable targets without relying on randomly
scanning for them. It is often possible to find vulnerable
web servers by sending carefully crafted queries to search
engines. Search worms1 automate this approach and spread
by using popular search engines to find new attack vectors.
These worms not only put significant load on search engines,
they also evade detection mechanisms that assume random
scanning. From the point of view of a search engine, signa-
tures against search queries are only a temporary measure
as many different search queries lead to the same results.
In this paper, we present our experience with search worms
and a framework that allows search engines to quickly detect
new worms and take automatic countermeasures. We argue
that signature-based filtering of search queries is ill-suited
for protecting against search worms and show how we pre-
vent worm propagation without relying on query signatures.
We illustrate our approach with measurements and numeric
simulations.

Categories and Subject Descriptors

D.4.6 [Operating Systems]: Security and Protection - Inva-
sive software

General Terms

Security

1Worms that query external servers for targets have been
labeled metaserver worms by Weaver et al. [14]. As we dis-
cuss worms that query search engines, we refer to them as
search worms in this paper.
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1. INTRODUCTION
As computer worms are becoming more common and spread-

ing faster, operating systems like Microsoft’s Windows XP
are now shipping with mechanisms to slow down randomly
scanning worms. Costa et al. show that it is possible to con-
tain even fast-spreading worms like Slammer by instrument-
ing hosts to detect worms and broadcast self-certifying alerts
to other end hosts [2]. These counter measures do not help if
a worm can create a hit list of live targets without randomly
scanning for them. An example of such metaserver [14]
worms are worms that search networked databases for new
targets. As web applications are becoming more common
and sophisticated, the number of vulnerable web servers is
increasing too. By carefully crafting search queries to search
engines, an adversary can quickly create a list of vulnerable
web servers. Automating this approach has led to the emer-
gence of worms that spread by infecting targets found as
a result of specific search queries. This hurts not only the
owners of infected machines but also the search engine, as
queries from search worms tend to be more expensive than
queries from regular users.

In the following, we use the worm definition due to Kien-
zle et al. [4]: “A worm is malicious code (standalone or file-
infecting) that propagates over a network, with or without
human assistance.” This definition allows us to include My-
Doom.O in the list of search worms [12]. MyDoom.O is an
example of a worm that requires human assistance to prop-
agate. It sends itself to email addresses found by using a
search engine. When a user executes the binary attached to
the worm email, the worm infects the machine and searches
for more email addresses. Santy, another search worm, does
not require human intervention; it searches for web servers
running a vulnerable version of phpBB and directly exploits
them to run another worm instance [3].

In this paper, we discuss the unique properties of search
worms and how they affect worm propagation. We analyze
measurements taken from MyDoom.O and Santy outbreaks
and discuss the impact of different parameters by employ-
ing numerical simulations. We present a framework based on
Polygraph [8] which automatically detects the occurrence of
new viruses and generates signatures that block them with-
out incurring noticeable false positives. Although we show
that signatures can stop a search worm from propagating,
we argue that on top of stringent operational requirements:
low false positives, high performance and fast turnaround,
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the nature of search worms is ill-suited for signature-based
protections. It is very easy for a search worm to completely
change the search query and still obtain the same result set.
Instead, we propose an algorithm that prevents worm prop-
agation based on analyzing the result set: During indexing,
we tag pages that belong to vulnerable servers or contain
potential infection targets. If we detect search results that
include a large fraction of tagged pages, we infer that the
query is due to a search worm and return only results that
have not been tagged. As a result, a search worm cannot
spread because the search engine does not return any tar-
gets.

The remainder of the paper is organized as follows. In
Section 2, we give an overview of related work. We discuss
properties of search worms in Section 3 and provide data on
two interesting incidents. Section 4 describes an architecture
to mitigate search worm propagation. We discuss different
factors effecting worm propagation in Section 5 and conclude
in Section 6.

2. RELATED WORK
There has been a lot of research on containing worm prop-

agation. Much of this research relies on heuristics that ana-
lyze network traffic for anomalous behavior [10, 13]. Mitiga-
tion can happen via rate limiting or by generating content-
based signatures that completely stop a worm outbreak. Of
several proposals for automatically generating worm signa-
tures [2, 5, 8], Vigilante [2] is the most promising, as it
does not require trusting participants and allows everybody
to generate their own filters locally, based on vulnerability
proofs.

The initial containment step of our worm mitigation ar-
chitecture is adapted from Polygraph [8], a system for gen-
erating signatures for polymorphic worms. Polygraph works
by extracting tokens, which are maximal length substrings
occurring in a large fraction of suspected worm samples.
These tokens are combined into signatures that can match
the small, disjointed pieces of invariant structure of a poly-
morphic worm. Unlike Vigilante, it can operate by observ-
ing worm traffic without simulating or communicating with
vulnerable servers.

This paper analyzes a different kind of worm that spreads
using search engines to find new targets. Approaches for
detecting them are different from more traditional worms as
it is possible to stop the worm from spreading directly at the
search engine without relying on a distributed architecture
of worm containment systems.

3. SEARCH WORMS
Search worms are different from other metaserver worms

because queries to search engines return only partial result
sets. The result set is ranked by the relative importance of
each site. To get more results, search worms change their
queries by using different keywords, adding random numbers
or walking deep into the result set. Nonetheless, due to
the ranking inherent in the returned results, a search worm
encounters many result collisions across subsequent queries
which affect its propagation performance.

A search worm usually executes the following sequence of
operations:

1. Generate search query: The purpose of the search
query is to return as many distinct targets as possi-
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Figure 1: The graph shows the number of MyDoom.O

search queries per second sent to Google on July 26th,

2004. It also shows the number of unique IP addresses

sending MyDoom.O queries during that day, which can be

used to approximate the number of infected hosts.

ble. Search worms often come with a list of prepared
queries. Each query may be responsible for a differ-
ent set of results, for example, different version num-
bers of vulnerable software packages. The search query
may contain other parameters that optimize the per-
formance of the worm, such as increasing the size of
the returned results or asking for results deep in the
result set.

2. Analyze search results: Search engines often re-
turn superfluous information that needs to be pruned.
A search worm looking for vulnerable hosts is going
to ignore URLs that belong to the search engine itself
or do not meet the expected URL format. The analy-
sis step may also prune duplicate results such as host
names or email addresses.

3. Infect identified targets: Based on the targets re-
turned from the analysis step, the search worm at-
tempts to exploit them. This usually involves refor-
matting a URL to include the exploit and bootstrap-
ping code. The bootstrap phase allows the search
worm to install multiple payloads, including itself, on
the compromised target machine. The installation may
happen in multiple steps and often relies on infrastruc-
ture already installed on the target. For example, vari-
ations of the Santy worm try to download themselves
on the infected machine first via wget, curl and then
fetch. Additional payloads often include applications
that join the compromised machine in a bot network
controlled by the adversary.

Next we turn our attention to our experiences with two
different search worms. MyDoom.O requires human inter-
vention to spread, but as our data shows that does not seem
to be a hurdle. Santy, on the other hand, is the first search
worm to spread completely automatically.
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3.1 MyDoom
MyDoom is a worm that propagates via email. The email

claims to be from a company’s support department and con-
tains an executable file as an attachment. When a user exe-
cutes it, the worm gets activated and searches the local hard
disk for email addresses of other users to infect. As a result,
the worm propagates along the social network of the infected
users. MyDoom.O improves on previous versions of My-
Doom by increasing its branching factor. Instead of relying
only on email addresses found locally, MyDoom.O uses the
domain names of email addresses to search for more email
addresses on Internet search engines. It first started spread-
ing on July 26th, 2004 and managed to infect about 60,000
hosts in less than 8 hours. MyDoom.O used the following
search engines, weighted by their respective probabilities:
Google (45%), Lycos (22.5%), Yahoo (20%) and Altavista
(12.5%).

Once MyDoom.O has received the search results, it an-
alyzes them for email addresses and sends itself to all the
addresses it finds. When a user opens a MyDoom.O email
and executes the attachment, that machine, too, starts using
search engines to find more email addresses.

Figure 1 shows the number of infected hosts and the num-
ber of MyDoom.O queries that Google received per second.
The graph does not quite follow the standard SIR model
as Google’s anomaly detection system refused to serve most
worm queries. During the peak of the outbreak, MyDoom.O
infected machines attempted more than 30,000 queries per
second.

3.2 Santy
The Santy worm surfaced on December 20th, 2004 and is

the first search worm to propagate automatically, without
any human intervention [3]. It is written in Perl and exploits
a bug in the phpBB bulletin system that allows an adversary
to run arbitrary code on the web server. To find vulnerable
servers to infect, it uses Google to search for URLs that con-
tain the string viewtopic.php. To infect a web server, Santy
appends an exploit against phpBB2 to each URL extracted
from the search results. The exploit instructs the web server
to download the Santy worm from a central distribution site.
Once the worm has been started, it asks the search engine
for more vulnerable sites. In addition to the worm itself,
all variants also download another payload connecting the
infected machine to an IRC bot network.

Although, the number of infected machines stayed in the
low thousands during the outbreak, the actual query traf-
fic was larger as infected web servers were often well con-
nected and ended up running multiple instances of the worm
for each vulnerable virtual host. Santy initially targeted
Google, but later variants also searched using Microsoft, Ya-
hoo and Lycos. Santy has been more tenacious than My-
Doom.O because most webmasters did not realize that their
machines had been compromised and did not patch security
holes in the web applications running on their servers. Even
if a search engine prevented a particular instance of Santy
from spreading by filtering search queries, it was easy for
worm authors to find queries to circumvent the filtering and
launch a new variant.

As bot networks are attractive and creating new Santy
variants easy, we have seen a large number of modifications
to the original worm. Using a honeypot to capture new out-
breaks of Santy, we have graphed the dependencies between
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Figure 3: The graph shows a time-line of infected IP ad-

dresses for three different Santy variants in December 2004.

Each variant manages to infect about four thousand differ-

ent IP addresses. The propagation of the last two variants

is overlapping in time.

different Santy variants in Figure 2. Each node in the graph
represents a different Santy variant written in Perl and is
labeled using its filename on the infected web server. To
give an overview about how the Santy worm evolves along
the time-line, we first connected each variant to the month
and year in which it occurred, illustrated as the bar in the
middle. We connected two nodes with an edge if their line
difference computed via diff is minimal in respect to all other
variants. As Santy is written in Perl, the number of changed
lines is a reasonable measure. Across all Santy variants that
we collected, the average number of line changes is about
484. The minimum number of changes lines is one and
the maximum is 1689. Interestingly, the 10th, 50th and
90th quantile are at 56, 264, and 959 line changes respec-
tively. The most common differences are changed search
queries and distribution hosts. The graph shows that some
variants of Santy have been continuously modified for over
six months and that there are possibly many different ad-
versaries launching new variants based on the disconnected
components.

Figure 3 shows the number of IP addresses infected by
the three earliest variants of Santy. The query signatures
shown in the legend of the graph allow the the variants to
be differentiated. Each variant managed to infect about four
thousand different IP addresses. The graph shows a sudden
plateau in the spread of the first variant. One possible rea-
son might be that the worm managed to infected all sus-
ceptible hosts. However, the second variant reached slightly
more IP addresses. A more likely explanation for this behav-
ior is that an overload of the distribution site stopped worm
propagation early; see Section 5 for simulation results.

4. WORM MITIGATION ARCHITECTURE
In the previous section, we discussed two different cases

of search worms. From the search engine’s point of view,
it is difficult to differentiate between a search worm that
requires human intervention to spread and one that spreads
fully automatically. Either way, the search engine needs to
quickly stop worm propagation to prevent machines from
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Figure 2: The graph shows the dependency between Santy variants from August 2005 to May 2006. Each node is labelled

by the filename downloaded to the infected host. An edge between two nodes indicates that the differences in their code

are minimal compared to all other variants. A time-line has been added to show how variants have evolved over time.

being infected and to avoid overload. The architecture of
our worm mitigation system is divided into three parts:

• An anomaly detection step that automatically blocks
parts of the worm traffic based on observing IP ad-
dresses.

• A signature generation step, based on Polygraph [8],
that uses a sample of the blocked traffic and a sample
of good query traffic to generate signatures that filter
the current worm outbreak.

• Once the worm has been contained, the final step is to
modify the search index so that subsequent variants
against the same vulnerability will be unsuccessful.

An overview of the system is shown in Figure 4. Both the
anomaly detection system as well as the signature generator
provide data to the web servers for use in identifying and
blocking bad queries.

4.1 Detecting Abnormal Traffic
To reduce the load on the search engine during the ini-

tial phase of a worm outbreak, we need to quickly classify
the IP addresses responsible for abnormal traffic. Although
the details of identifying an IP address as sending abnor-
mal traffic are beyond the scope of this paper, here is one

possible example: A search worm needs to carefully craft
queries that are likely to return vulnerable candidates and
also needs to be careful that subsequent queries return differ-
ent results. This often implies that queries contain random
numbers or version numbers. To counter this, we could cre-
ate a map of frequent query words and use it to compute
the compound probability for a query. A simple approach
could compute the minimum probability for each word in
the query: min(P(q)). An IP address that sends too many
low probability queries gets flagged as abnormal. Further
examples can be found in the existing literature [6, 9]. Once
an IP address has been flagged as abnormal, we ask the user
to complete a reverse Turing test [1] before answering the
search query. If an IP address keeps sending queries without
solving the reverse Turing test, we collect the corresponding
queries to automatically create a candidate set for queries
that should be filtered in general. Depending on the load of
the search engine, we may decide to just sample the abnor-
mal queries for the subsequent signature generation phase
instead of challenging the user.

The anomaly detection step fulfills two important goals:
it can be used to block the majority of worm traffic, buy-
ing additional time for the signature generation phase, and
it also helps in collecting abnormal traffic samples for the
signature generation step.
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Figure 4: An aggregation server watches queries from IP

addresses for abnormal behavior. Once abnormal traffic has

been detected from a set of IP addresses, a sample of the

requests is stored for signature generation.

4.2 Signature Generation
We create signatures in a fashion similar to Polygraph [8].

Polygraph extracts tokens from bad queries and uses these
tokens to create signatures matching the bad traffic. It uses
hierarchical clustering to merge signatures until a predefined
false positive threshold is reached. False positives are com-
puted by matching signatures against a good query set. Al-
though Newsome et al. provide a good outline of the algo-
rithms, they do not provide many insights into their perfor-
mance.

In the following, we will describe the signature generation
process for a Santy variant that emerged in 2005, outline
changes to Polygraph, and discuss our implementation. We
employed a good query set containing ten million sampled
queries from the previous day. The bad query set consisted
of about one million queries and was sampled continuously.
We first took all queries in the abnormal query set and ex-
tracted tokens by finding the longest common substrings not
covered already by a longer more frequent substring. We dis-
carded all tokens not occurring in at least five percent of all
queries. The main difference when applying Polygraph’s al-
gorithm to extract tokens to search queries is that search
queries contain semantic boundaries along which we can
split long query strings into smaller ones. This increased
the speed of extracting the tokens and also improved the
resulting signatures. We ran token extraction on a clus-
ter of 85 2.4 GHz Intel Xeon machines which generated all
tokens within a few seconds once the data files had been
loaded into memory. For the query sets described above,
the algorithm resulted in 56 different tokens. The top ten
were: [0-9]+, GET, /search, &num=, &start=, ?q=, +[0-9]+,
+-modules,+in, and +this.

The hierarchical clustering step was more time consum-
ing. Each unique tokenized query forms the basis of a signa-
ture2. We computed the cross product of all signatures by
merging each signature with every other signature. Two sig-
natures are merged by computing their longest common sub-
sequence. For example, merging two signatures consisting

2A signature can be expressed as a regular expression but
can also take other forms such as Bayesian signatures.

of the tokens v, w, x, y, v and a, w, x, z, v respectively would
yield the signature w, x, v3. The signature that results in
the lowest false positive rate forms a new cluster into which
the parent signatures are merged. The time complexity of
the initial cross-product is O(n2) and the remainder of the
clustering algorithm has a time complexity of O(n log n). In
our experiment, we distributed the signature table across a
cluster of 85 machines which completed hierarchical cluster-
ing after about 25 minutes. We could reduce the run-time
by using smaller sample sets but our requirements for few
false positives make that difficult. The following signature
was generated as part of the final result set and matched
about 75% of all bad queries without matching any query
in the good sample set:

GET /search\?q=.*\+-modules&num=[0-9][0-9]+&start=

Although the signature above matches a high percentage
of Santy queries, it is overly broad as can be seen when
looking at the actual Santy queries shown in Figure 5. We
can improve the signatures by terminating the clustering
process earlier, which is governed by the threshold on the
false positives. But, unfortunately, because the bad queries’
structure is usually quite different from the normal ones’, the
generated signature will still have the same low false positive
rate even when it is over-general. Scoring only based on the
false positive rate, the merging step often leads to signatures
that do not improve the detection rate noticeably but are
more generic than necessary.

Newsome et al. motivated the Polygraph algorithm by ar-
guing that even polymorphic worms have invariants due to
protocol framing and the practical constraints of exploit-
ing a vulnerability. This is completely different for search
worms. Many different queries can lead to very similar re-
sult sets. For example, the following two queries: “reply
to topics in this forum” 1132, and “post subject” “powered
by phpBB” 1132, will give two result sets with high over-
lapping percentage by searching Google. Although, we em-
ploy signature-based schemes to prevent search worms from
spreading, we have entered an arms race in which the adver-
sary can quickly create new Santy variants that use different
query terms; see Figure 2. This arms race peaked when we
encountered IRC bots that took their Santy queries directly
from the channel operator; see Appendix A.

4.3 Index-Based Filtering
To deal with the problem that multiple search queries may

map to the highly similar set of result pages, we present a
query independent algorithm that detects if search results
are due to a search worm. The algorithm is based on the
following observation: A search worm relies on a search en-
gine to obtain a list of potentially vulnerable targets. If the
search engine does not provide any vulnerable targets in the
search results, the worm fails to spread.

As a search engine needs to crawl all pages shown in its
index, we assume that it is possible to determine during
the crawl phase, or while indexing, if a page is hosted on
a vulnerable server or contains other potential targets such
as email addresses. This decision can be based on the ver-
sion of the web server, the web application or information
available on the web page. Some of this information may

3Polygraph uses a modified Smith-Waterman [11] algorithm
that we cannot describe in detail due to space constraints.
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GET /search?q="View+previous+topic+::+View+next+topic"+8756+-modules&num=50&start=35
GET /search?q="vote+in+polls+in+this+forum"+7875+-modules&num=50&start=10
GET /search?q="reply+to+topics+in+this+forum"+5632+-modules&num=50&start=15
GET /search?q="Post+subject"+phpBB+6578+-modules&num=50&start=10
GET /search?q="delete+your+posts+in+this+forum"+9805+-modules&num=50&start=35
GET /search?q="post+new+topics+in+this+forum"+1906+-modules&num=100&start=30

Figure 5: The figure shows sample queries from a Santy outbreak in 2005.

also be provided externally; for example, a list of known
vulnerable hosts. When creating the index, we tag all pages
from vulnerable hosts or web applications with a piece of in-
formation that can be evaluated by the web server when it
prepares the search results. Unfortunately, it is not possible
to drop all pages from vulnerable servers completely from
the index as they contain useful information users want to
be able to access. To index billions of web pages efficiently,
it is important to keep the size of the index small. In our
case, we use a single bit to tag pages belonging to vulnera-
ble servers. Another bit can be used to differentiate between
pages containing infection targets rather than belonging to
an exploitable server.

When a web server receives a search query, it retrieves all
relevant results from its index servers. For each URL, the
index result contains information about the vulnerability of
the underlying host. The web server counts how many vul-
nerable URLs have been returned and to how many hosts
they belong. Let n be the number of search results, e the
number of vulnerable results and h the number of different
web servers in the results. We can then choose thresholds α

for the fraction of vulnerable results and β for the number
of different hosts that we expect. If both e

n
≥ α and h ≥ β,

then the current query belongs to a search worm. At this
point, we can decide to not return any results at all. How-
ever, to reduce the collateral damage from false positives,
we filter all pages from the search results that have been
tagged as vulnerable before showing them to the user.

Empirical good values for α and β are around 0.3 − 0.7
and 3 − 10 respectively. The parameter β determines how
many hosts a search worm can infect if it manages to stay
below the threshold. The reason for using a threshold on the
number of hosts at all is to reduce collateral damage when
a user is looking for site specific information and restricts
the search to a single site. Alternatively, we could use the
host threshold β only if a query is navigational which re-
quires reliable detection of navigational queries. Under the
threshold-based approaches, we can adjust the thresholds
accordingly to meet different effective level. Even when a
well-designed, stealthy worm successfully evades the thresh-
olds, the damage can be controlled within a limited small
extension as the number of infected hosts will be kept low.

The benefit of an index-based approach is that it does not
rely on classifying search queries as abnormal and that it can
be implemented pro-actively. Whenever a new vulnerability
for a web application has been discovered, we can classify
it in the index before a search worm exploiting it has even
been created. This approach has the limitation that we need
to know the vulnerability before we can tag the index. For a
zero-day attack, we rely on the mechanisms outlined in the
previous sections to mitigate the impact of the search worm
to buy some time. Once the vulnerability is understood, the
index can be updated accordingly.

Because the index is pre-computed and the actual com-
putations to detect a search worm are independent of the

query, our approach is efficient and simple to implement. For
search worms like MyDoom.O that are not directly infecting
hosts, but are searching for vulnerable targets instead, we
require an additional step that analyzes the content snippets
returned with the search results. If we find that the content
snippets contain infection targets like email addresses, we
filter it out before returning the search result. This is nec-
essary to avoid false positives as there are potentially many
more web pages containing infection targets than there are
vulnerable web applications.

5. DISCUSSION
The propagation rate of a search worm is influenced by

many criteria. Santy serializes acquiring and infecting new
targets. As a result, a Santy instance stops spreading if
it gets blocked when either contacting the search engine or
when infecting a host. Using Santy as an example, we dis-
cuss other factors that influence the propagation of search
worms.

Instead of serializing search engine queries and infection
attempts, a search worm may execute network requests in
parallel. This avoids slowing down propagation when con-
tacting slow or unavailable hosts. However, if a search worm
spreads too quickly or sends too many search queries, it may
overwhelm the search engine. At that point, no instance of
the worm is going to be able to continue spreading. An in-
telligent search worm might want to throttle the number of
search queries when it detects higher latencies on the search
engine.

As search engines rank their results, there is a noticeable
overlap in target hosts, i.e. even though a search worm may
launch many different queries, each query might return only
a small number of new hosts. Santy authors try to overcome
this limitation by separating the search spaces. Common
techniques include searching for distinct version numbers of
a vulnerable web application or including random numbers
in the query.

The overlap in search results slows down worm propaga-
tion as popular hosts become targets of numerous infection
attempts. Even if the worm prevents multiple instances from
running, the bootstrap code downloads the worm and other
payloads for each attempted infection. This increases not
only the load on the infected host but also the load on the
distribution site. If the distribution site gets overloaded the
worm ceases to spread. Some Santy variants have tried to
cope with this behavior by giving each worm instance a fixed
lifespan after which they stop spreading. Implications of this
and other strategies have been analyzed by Ma et al. [7]

Interestingly, if a search engine applies anomaly detection
techniques that do not block 100% of all worm queries, it
may help the worm spread. Common anomaly detection
techniques block IP addresses based on their behavior. This
usually implies that a worm can make a few queries before
the corresponding IP address gets blocked. Figure 6 shows a
numerical simulation of the potential impact an anomaly de-

6



0 1800 3600 5400 7200 9000 10800 12600 14400
0

2000
4000
6000
8000

10000
12000
14000
16000

Infected hosts
QPS

0 1800 3600 5400 7200 9000 10800 12600 14400
Time in seconds

0
2000
4000
6000
8000

10000
12000
14000
16000

Infected Hosts
QPS
Filtered QPS

Figure 6: The upper graph shows the simulated propaga-

tion of Santy.C when a search engine does not employ an

anomaly detection system. The lower graph shows the sim-

ulated propagation when an anomaly detection system pre-

vents most worm queries from being successful. In the for-

mer case, the worm overloads the distribution host result-

ing in throttled propagation speeds. In the latter case, the

anomaly detection system reduces the load on the distribu-

tion host by stopping most worm instances from spreading.

tection system can have on the propagation of Santy.C. We
show the median results from thirty randomized executions.
The upper graph, which simulates a search engine without
employing an anomaly detection sytem, shows that worm
propagation stops once the distribution site gets overloaded.
The load on the distribution site is aggrevated by the fact
that Santy.C. causes already infected hosts to download both
the worm as well as the payload. The check for dual infection
is contained in the payload itself rather than in the exploit
to causes the download. The more machines are being in-
fected, the more likely that already infected machines are
returned as part of the search results. These machines keep
the load on the distribution site high. At some point, it’s
not possible for new worm instances to start. On the other
hand, the lower graph shows what happens when instances
flagged by an anomaly detection system are prevented from
searching. The infected hosts that are being prevented from
searching, no longer cause additional downloads from the
distribution host and the load on the distribution site is re-
duced. As a result, the worm is able to infect twice as many
systems.

6. CONCLUSION
Worms no longer infect their targets by randomly scan-

ning the Internet. They now also take advantage of the
huge amount of information collected by search engines and
spread by querying a search engine for new targets to in-
fect. To demonstrate that this is a real problem, we have
presented our experience with two different search worms:
MyDoom.O and Santy. We have shown that signature gen-
eration in conjunction with anomaly detection can prevent
a worm from overloading a search engine but that the ap-
proach is not effective in preventing a worm from spread-
ing. We argue that a signature-based approach is ill-suited
against search worms, as many different search queries can
lead to the same result. That is, even after signatures have

been applied to block a particular variant of a search worm,
it is easy for adversaries to find queries that circumvent ex-
isting signatures.

To deal with this problem, we propose a solution that is
query independent and classifies web pages as vulnerable
if they belong to an exploitable server or contain potential
infection targets. If a search query generates too many vul-
nerable results, we can detect that the search query belongs
to a search worm and remove vulnerable results before show-
ing them to the user. This approach is CPU efficient as it
relies on pre-computation and is independent of the actual
query.
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APPENDIX

A. SANTY FRAGMENT
Some variants of the Santy worm could change their search

queries via IRC commands reducing the effectiveness of us-
ing signatures to filter search queries. The following code
fragment illustrates this approach:

...

if (\$funcarg =~ /^google\\s+(\\d+)\\s+(.*)\\s+(.*)/) {

#sendraw(\$IRC_cur_socket, \"PRIVMSG \$printl :\\002[GOOGLE-SEARCH]

#\\002 Scanning for unpatched phpBB for \".\$1.\" seconds.\");

srand;

my \$itime = time;

my (\$cur_time);

my (\$exploited);

\$boturl=\$2;

\$cur_time = time - \$itime;

\$exploited = 0;

while(\$1>\$cur_time){

\$cur_time = time - \$itime;

@urls=fetch2(\"\$3\");

...
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